# Numeric.Interpolation.Sample: exported symbols usage examples

## Symbols

- cubicLinear Collapse [-]Found in Numeric.Interpolation.Type from the package interpolation
basisFunctions = Basis.hermite1, sampleBasisFunctions = Sample.hermite1, coefficientsToInterpolator = Basis.coefficientsToHermite1, valueFromNode = fst } cubicLinear :: (Fractional a, Ord a, Show a) => T a a (a, a) cubicLinear = Cons { ssvFromNodes = \xs ys -> unlines $ zipWith (\x y -> show x ++ " " ++ show y) xs ys, interpolatePiece = Piece.hermite1, basisOverlap = 4, basisFunctions = Basis.cubicLinear, sampleBasisFunctions = Sample.cubicLinear, coefficientsToInterpolator = Basis.coefficientsToCubicLinear, valueFromNode = fst } cubicParabola :: (Fractional a, Ord a, Show a) => T a a (a, a)

Found in Numeric.Interpolation.Type from the package interpolationbasisOverlap = 4, basisFunctions = Basis.hermite1, sampleBasisFunctions = Sample.hermite1, coefficientsToInterpolator = Basis.coefficientsToHermite1, valueFromNode = fst } cubicLinear :: (Fractional a, Ord a, Show a) => T a a (a, a) cubicLinear = Cons { ssvFromNodes = \xs ys -> unlines $ zipWith (\x y -> show x ++ " " ++ show y) xs ys, interpolatePiece = Piece.hermite1, basisOverlap = 4, basisFunctions = Basis.cubicLinear, sampleBasisFunctions = Sample.cubicLinear, coefficientsToInterpolator = Basis.coefficientsToCubicLinear, valueFromNode = fst }

Found in Numeric.Interpolation.Type from the package interpolationssvFromNodes = \xs ys -> unlines . zipWith (\x (y,dy) -> show x ++ " " ++ show y ++ " " ++ show dy) xs $ hermite1Split xs ys, interpolatePiece = Piece.hermite1, basisOverlap = 4, basisFunctions = Basis.hermite1, sampleBasisFunctions = Sample.hermite1, coefficientsToInterpolator = Basis.coefficientsToHermite1, valueFromNode = fst } cubicLinear :: (Fractional a, Ord a, Show a) => T a a (a, a) cubicLinear = Cons { ssvFromNodes = \xs ys -> unlines $ zipWith (\x y -> show x ++ " " ++ show y) xs ys, interpolatePiece = Piece.hermite1, basisOverlap = 4,

Found in Numeric.Interpolation.Type from the package interpolationCons { ssvFromNodes = \xs ys -> unlines . zipWith (\x (y,dy) -> show x ++ " " ++ show y ++ " " ++ show dy) xs $ hermite1Split xs ys, interpolatePiece = Piece.hermite1, basisOverlap = 4, basisFunctions = Basis.hermite1, sampleBasisFunctions = Sample.hermite1, coefficientsToInterpolator = Basis.coefficientsToHermite1, valueFromNode = fst } cubicLinear :: (Fractional a, Ord a, Show a) => T a a (a, a) cubicLinear = Cons { ssvFromNodes = \xs ys -> unlines $ zipWith (\x y -> show x ++ " " ++ show y) xs ys, interpolatePiece = Piece.hermite1,

Found in Numeric.Interpolation.Type from the package interpolationmodule Numeric.Interpolation.Type ( T(..), linear, hermite1, cubicLinear, cubicParabola, ) where import qualified Numeric.Interpolation.NodeList as Nodes import qualified Numeric.Interpolation.Piece as Piece

linear Collapse [-]Found in Numeric.Interpolation.Type from the package interpolationbasisFunctions :: [x] -> [Nodes.T x ny], sampleBasisFunctions :: [x] -> x -> [(Int, y)], coefficientsToInterpolator :: [x] -> [y] -> Nodes.T x ny, valueFromNode :: ny -> y } linear :: (Fractional a, Ord a, Show a) => T a a a linear = Cons { ssvFromNodes = \xs ys -> unlines $ zipWith (\x y -> show x ++ " " ++ show y) xs ys, interpolatePiece = Piece.linear, basisOverlap = 2, basisFunctions = Basis.linear, sampleBasisFunctions = Sample.linear, coefficientsToInterpolator = Basis.coefficientsToLinear, valueFromNode = id } hermite1 :: (Fractional a, Ord a, Show a) => T a a (a, a)

Found in Numeric.Interpolation.Type from the package interpolation-}, basisFunctions :: [x] -> [Nodes.T x ny], sampleBasisFunctions :: [x] -> x -> [(Int, y)], coefficientsToInterpolator :: [x] -> [y] -> Nodes.T x ny, valueFromNode :: ny -> y } linear :: (Fractional a, Ord a, Show a) => T a a a linear = Cons { ssvFromNodes = \xs ys -> unlines $ zipWith (\x y -> show x ++ " " ++ show y) xs ys, interpolatePiece = Piece.linear, basisOverlap = 2, basisFunctions = Basis.linear, sampleBasisFunctions = Sample.linear, coefficientsToInterpolator = Basis.coefficientsToLinear, valueFromNode = id }

Found in Numeric.Interpolation.Type from the package interpolation{- ^ maximum difference of indices of basis functions that overlap plus one -}, basisFunctions :: [x] -> [Nodes.T x ny], sampleBasisFunctions :: [x] -> x -> [(Int, y)], coefficientsToInterpolator :: [x] -> [y] -> Nodes.T x ny, valueFromNode :: ny -> y } linear :: (Fractional a, Ord a, Show a) => T a a a linear = Cons { ssvFromNodes = \xs ys -> unlines $ zipWith (\x y -> show x ++ " " ++ show y) xs ys, interpolatePiece = Piece.linear, basisOverlap = 2, basisFunctions = Basis.linear, sampleBasisFunctions = Sample.linear, coefficientsToInterpolator = Basis.coefficientsToLinear, valueFromNode = id

Found in Numeric.Interpolation.Type from the package interpolationCons { ssvFromNodes :: [x] -> [y] -> String, interpolatePiece :: Piece.T x y ny, basisOverlap :: Int {- ^ maximum difference of indices of basis functions that overlap plus one -}, basisFunctions :: [x] -> [Nodes.T x ny], sampleBasisFunctions :: [x] -> x -> [(Int, y)], coefficientsToInterpolator :: [x] -> [y] -> Nodes.T x ny, valueFromNode :: ny -> y } linear :: (Fractional a, Ord a, Show a) => T a a a linear = Cons { ssvFromNodes = \xs ys -> unlines $ zipWith (\x y -> show x ++ " " ++ show y) xs ys, interpolatePiece = Piece.linear, basisOverlap = 2,

Found in Numeric.Interpolation.Type from the package interpolationdata T x y ny = Cons { ssvFromNodes :: [x] -> [y] -> String, interpolatePiece :: Piece.T x y ny, basisOverlap :: Int {- ^ maximum difference of indices of basis functions that overlap plus one -}, basisFunctions :: [x] -> [Nodes.T x ny], sampleBasisFunctions :: [x] -> x -> [(Int, y)], coefficientsToInterpolator :: [x] -> [y] -> Nodes.T x ny, valueFromNode :: ny -> y } linear :: (Fractional a, Ord a, Show a) => T a a a linear = Cons { ssvFromNodes = \xs ys -> unlines $ zipWith (\x y -> show x ++ " " ++ show y) xs ys, interpolatePiece = Piece.linear,

Found in Numeric.Interpolation.Type from the package interpolationmodule Numeric.Interpolation.Type ( T(..), linear, hermite1, cubicLinear, cubicParabola, ) where